Actively switching the thermal conductivity of thin films via external stimuli: electric fields, liquid infiltration of proteins and modulated laser energy

Patrick E. Hopkins,^{1,2,3} Jeffrey L. Braun,¹ Brian M. Foley,^{1,4} John A. Tomko,² David A. Scrymgeour,⁵ Margeaux Wallace,⁶ Susan Trolier-McKinstry,⁶ Madhusudan Tyagi,⁷ Benjamin D. Allen,⁸ Melik C. Demirel,⁹ Jiwei Liu,² Jon F. Ihlefeld,^{2,5}

¹ Dept. of Mechanical and Aerospace Engr., University of Virginia, Charlottesville, VAUSA
² Dept. of Materials Science and Engr., University of Virginia, Charlottesville, VA USA
³ Dept. of Physics, University of Virginia, Charlottesville, VA USA
⁴ Current Address: Dept. of Mechanical Engr., Georgia Tech, Atlanta, GA USA
⁵ Sandia National Laboratories, Albuquerque, NM USA
⁶ Dept. of Materials Science and Engr., Penn. State University, University Park, PA USA
⁷ Center for Neutron Research, NIST, Gaithersburg, MD USA
⁸ Dept. of Biochemistry and Molecular Biology, Penn. State University, University Park, PA USA
⁹ Dept. of Engr. Science and Mechanics, Penn. State University, University Park, PA USA

Dynamically regulating thermal transport in solids enables possibilities of thermal energy control, such as new computing mechanisms utilizing phonons, a novel means to control phonon-coupled waves and particles such as polaritons and polarons, or the ability to use thermal signatures as a metric for sensing environmental changes. In this work, I will present results from our recent studies in developing nanoscale thermal conductivity "switches", or the ability to change the thermal conductivity of a thin film system through the application of some external stimulus. We will discuss three different types of thermal conductivity switches or devices based on: 1) the application of electric fields across lead-zirconate titanate (PZT) thin films to manipulate the phonon-ferroelastic domain wall scattering rates; 2) hydration of squid ring teeth recombinant protein thin films to increase the mean square displacement oscillations in crystalline domains, which relaxes upon drying; and 3) trigging the metal-insulator transition (MIT) in VO₂ two-terminal devices with absorbed heat from a modulated laser train to create photo-thermally gated electrical devices.