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As a means of investigating both the electrical and thermal properties of nanometer-scale electron devices 

within a reasonable computing time, we previously proposed a quasi-self-consistent Monte Carlo 

simulation method that used two new procedures: (i) a local temperature determination using the 

simulated phonon spatial distribution and feedback to update the electron-phonon scattering rates and (ii) 

a new algorithm which enable us to calculate long-time phonon transport by introducing different time 

increments for the electron and phonon transport and a replica technique for phonon generation map [1, 2]. 

In order to improve the quantitative accuracy and self-consistency of the simulation, we introduced (i) 

spatially dependent electron-phonon scattering rates that are calculated directly using a simulated phonon 

distribution (not the local temperature) taking into account (ii) the energy dependence of the phonon 

group velocity and phonon-phonon scattering rate and (iii) positive polarization charges due to 

piezoelectricity at the AlGaN/GaN interface [3]. Using this advanced Monte Carlo method, we succeeded 

in simulating the current-voltage characteristics and thermal resistance of nanometer-scale GaN High 

Electron Mobility Transistors (HEMTs), with which a quantitative evaluation could be made using actual 

devices [3]. We also examined the convergence of this self-consistent Monte Carlo model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: (a) Schematic diagram of quasi self-consistent simulation procedure for electron and phonon 

transport, (b) two-dimensional AlGaN/GaN HEMT model and boundary-reflection models for 

electrons and phonons, and (c) profiles of local channel temperature, heat generation rate, and 

electric field in the channel (Vgs=1 V, Vds=20 V) [3] . 
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